Wednesday, 27 June 2012

Java (Programming Language)

Java (programming language)



Java is a programming language originally developed by James Gosling at Sun Microsystems (which has since merged into Oracle Corporation) and released in 1995 as a core component of Sun Microsystems' Java platform. The language derives much of its syntax from C and C++ but has a simpler object model and fewer low-level facilities. Java applications are typically compiled to bytecode (class file) that can run on any Java Virtual Machine (JVM) regardless of computer architecture. Java is a general-purpose, concurrent, class-based, object-oriented language that is specifically designed to have as few implementation dependencies as possible. It is intended to let application developers "write once, run anywhere" (WORA), meaning that code that runs on one platform does not need to be recompiled to run on another. Java is as of 2012 one of the most popular programming languages in use, particularly for client-server web applications, with a reported 10 million users.

The original and reference implementation Java compilers, virtual machines, and class libraries were developed by Sun from 1995. As of May 2007, in compliance with the specifications of the Java Community Process, Sun relicensed most of its Java technologies under the GNU General Public License. Others have also developed alternative implementations of these Sun technologies, such as the GNU Compiler for Java and GNU Classpath.




Practices




Java platform




One characteristic of Java is portability, which means that computer programs written in the Java language must run similarly on any hardware/operating-system platform. This is achieved by compiling the Java language code to an intermediate representation called Java bytecode, instead of directly to platform-specific machine code. Java bytecode instructions are analogous to machine code, but are intended to be interpreted by a virtual machine (VM) written specifically for the host hardware. End-users commonly use a Java Runtime Environment (JRE) installed on their own machine for standalone Java applications, or in a Web browser for Java applets.

Standardized libraries provide a generic way to access host-specific features such as graphics, threading, and networking.
A major benefit of using bytecode is porting. However, the overhead of interpretation means that interpreted programs almost always run more slowly than programs compiled to native executables would. Just-in-Time (JIT) compilers were introduced from an early stage that compile bytecodes to machine code during runtime.

Implementations


Oracle Corporation is the current owner of the official implementation of the Java SE platform. This implementation is based on the original implementation of Java by Sun. The Oracle implementation is available for Mac OS X, Windows and Solaris. Because Java lacks any formal standardization recognized by Ecma International, ISO/IEC, ANSI, or any other third-party standards organization, the Oracle implementation is the de facto standard.

The Oracle implementation are packaged into two different distributions. The Java Runtime Environment (JRE) which contains the parts of the Java SE platform required to run Java programs. This package is intended for end-users. The Java Development Kit (JDK), is intended for software developers and includes development tools such as the Java compiler, Javadoc, Jar, and a debugger.
OpenJDK is another notable Java SE implementation that is licensed under the GPL. The implementation started when Sun began releasing the Java source code under the GPL. As of Java SE 7, OpenJDK is the official Java reference implementation.
The goal of Java is to make all implementations of Java compatible. Historically, Sun's trademark license for usage of the Java brand insists that all implementations be "compatible". This resulted in a legal dispute with Microsoft after Sun claimed that the Microsoft implementation did not support RMI or JNI and had added platform-specific features of their own. Sun sued in 1997, and in 2001 won a settlement of US$20 million, as well as a court order enforcing the terms of the license from Sun. As a result, Microsoft no longer ships Windows with Java.
Platform-independent Java is essential to Java EE, and an even more rigorous validation is required to certify an implementation. This environment enables portable server-side applications.

Performance



Programs written in Java have a reputation for being slower and requiring more memory than those written in C.However, Java programs' execution speed improved significantly with the introduction of Just-in-time compilation in 1997/1998 for Java 1.1, the addition of language features supporting better code analysis (such as inner classes, StringBuffer class, optional assertions, etc.), and optimizations in the Java Virtual Machine itself, such as HotSpot becoming the default for Sun's JVM in 2000. Currently (February 2012), microbenchmarks show Java 7 is approximately 1.5 times slower than C.
Some platforms offer direct hardware support for Java; there are microcontrollers that can run Java in hardware instead of a software Java Virtual Machine, and ARM based processors can have hardware support for executing Java bytecode through its Jazelle option.

Automatic memory management

Java uses an automatic garbage collector to manage memory in the object lifecycle. The programmer determines when objects are created, and the Java runtime is responsible for recovering the memory once objects are no longer in use. Once no references to an object remain, the unreachable memory becomes eligible to be freed automatically by the garbage collector. Something similar to a memory leak may still occur if a programmer's code holds a reference to an object that is no longer needed, typically when objects that are no longer needed are stored in containers that are still in use. If methods for a nonexistent object are called, a "null pointer exception" is thrown.
One of the ideas behind Java's automatic memory management model is that programmers can be spared the burden of having to perform manual memory management. In some languages, memory for the creation of objects is implicitly allocated on the stack, or explicitly allocated and deallocated from the heap. In the latter case the responsibility of managing memory resides with the programmer. If the program does not deallocate an object, a memory leak occurs. If the program attempts to access or deallocate memory that has already been deallocated, the result is undefined and difficult to predict, and the program is likely to become unstable and/or crash. This can be partially remedied by the use of smart pointers, but these add overhead and complexity. Note that garbage collection does not prevent "logical" memory leaks, i.e. those where the memory is still referenced but never used.
Garbage collection may happen at any time. Ideally, it will occur when a program is idle. It is guaranteed to be triggered if there is insufficient free memory on the heap to allocate a new object; this can cause a program to stall momentarily. Explicit memory management is not possible in Java.
Java does not support C/C++ style pointer arithmetic, where object addresses and unsigned integers (usually long integers) can be used interchangeably. This allows the garbage collector to relocate referenced objects and ensures type safety and security.
As in C++ and some other object-oriented languages, variables of Java's primitive data types are not objects. Values of primitive types are either stored directly in fields (for objects) or on the stack(for methods) rather than on the heap, as commonly true for objects (but see Escape analysis). This was a conscious decision by Java's designers for performance reasons. Because of this, Java was not considered to be a pure object-oriented programming language. However, as of Java 5.0, autoboxing enables programmers to proceed as if primitive types were instances of their wrapper class.
Java contains multiple types of garbage collectors. By default, HotSpot uses the Concurrent Mark Sweep collector, also known as the CMS Garbage Collector. However, there are also several other garbage collectors that can be used to manage the Heap. For 90% of applications in Java, the CMS Garbage Collector is good enough.

Syntax



The syntax of Java is largely derived from C++. Unlike C++, which combines the syntax for structured, generic, and object-oriented programming, Java was built almost exclusively as an object-oriented language. All code is written inside a class, and everything is an object, with the exception of the primitive data types (integers, floating-point numbers, boolean values, and characters), which are not classes for performance reasons.
Unlike C++, Java does not support operator overloading or multiple inheritance for classes. This simplifies the language and aids in preventing potential errors and anti-pattern design.

Example:
// This is an example of a single line comment using two slashes
 
/* This is an example of a multiple line comment using the slash and asterisk.
   This type of comment can be used to hold a lot of information or deactivate
   code but it is very important to remember to close the comment. */
 
/**
 * This is an example of a Javadoc comment; Javadoc can compile documentation
 *  from this text.
 */

can you go to link this : sorry I'm busy :(
http://en.wikipedia.org/wiki/Java_(programming_language)



No comments:

Post a Comment